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Feedback Capacity of Stationary Gaussian Channels
Young-Han Kim, Member, IEEE

Abstract—The feedback capacity of additive stationary
Gaussian noise channels is characterized as the solution to a
variational problem in the noise power spectral density. When
specialized to the first-order autoregressive moving-average noise
spectrum, this variational characterization yields a closed-form
expression for the feedback capacity. In particular, this result
shows that the celebrated Schalkwijk–Kailath coding achieves the
feedback capacity for the first-order autoregressive moving-av-
erage Gaussian channel, positively answering a long-standing
open problem studied by Butman, Tiernan–Schalkwijk, Wol-
fowitz, Ozarow, Ordentlich, Yang–Kavčić–Tatikonda, and others.
More generally, it is shown that a �-dimensional generalization
of the Schalkwijk–Kailath coding achieves the feedback capacity
for any autoregressive moving-average noise spectrum of order
�. Simply put, the optimal transmitter iteratively refines the
receiver’s knowledge of the intended message. This development
reveals intriguing connections between estimation, control, and
feedback communication.

Index Terms—Additive Gaussian noise channel, autoregressive
moving-average spectrum, channel capacity, feedback, iterative re-
finement, linear coding, stationary Gaussian process.

I. INTRODUCTION

W E consider a communication scenario in which
one wishes to communicate a message index

over the additive Gaussian
noise channel

where the additive Gaussian noise process is sta-
tionary with for each

. For block length , we specify a feed-
back code with the encoding maps

that result in codewords (or more precisely, code functions)
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satisfying the average power constraint

(1)

and the decoding map

The probability of error is defined as

where the message is uniformly distributed over
and is independent of . We say that the rate is achievable
if there exists a sequence of codes with as

. The feedback capacity is defined as the supremum
of all achievable rates.

In comparison, when there is no feedback, the codewords
are independent of the pre-

vious channel outputs. We define the nonfeedback capacity ,
or the capacity in short, in a manner similar to the feedback case.

It is well known that the nonfeedback capacity is character-
ized by water-filling on the noise spectrum, which is arguably
one of the most beautiful results in information theory. More
specifically, the capacity of the additive Gaussian noise channel

, , under the power constraint , is

(2)

where is the power spectral density of the stationary
noise process , i.e., the Radon–Nikodym derivative of
the spectral distribution of (with respect to the
Lebesgue measure), and the water level is chosen to satisfy

(3)

Although (2) and (3) give only a parametric characterization of
the capacity under the power constraint for each
parameter , this solution is considered simple and el-
egant enough to be called closed-form. Just like many other
fundamental developments in information theory, the idea of
water-filling comes from Shannon [62], although it is sometimes
attributed to Holsinger [23] or Ebert [13].

For the case of feedback, no such elegant solution exists. Most
notably, Cover and Pombra [8] characterized the feedback ca-
pacity through the “ -block feedback capacity”

(4)
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where the maximum is taken over all positive semidefinite ma-
trices and all strictly lower triangular of
sizes satisfying . Using the
asymptotic equipartition property (AEP) for arbitrary (nonsta-
tionary nonergodic) Gaussian processes, a coding theorem can
be then proved to characterize the feedback capacity as a lim-
iting expression

(5)

Despite its generality, the Cover–Pombra formulation of the
feedback capacity falls short of what we can call a closed-form
solution. Indeed, the infinite-letter expression (5) in itself does
not provide a computable characterization of the feedback ca-
pacity. Hence, much effort has been made to further understand
and simplify the Cover–Pombra formulation. Apparently from
(4), the most natural strategy towards a closed-form characteri-
zation seems to be first finding the optimal solution
for each , and then analyzing its limiting behavior.

Roughly speaking, there have been four distinct approaches
in the literature that follow this strategy:

First, in a less publicized conference paper, Ordentlich [50]
studied the properties of by a fixed-point charac-
terization. This result shows the optimality of a filter matrix
that sends fresh information each time (i.e., transmitting an input
signal orthogonal to the previously received output signals), the
property of which is sometimes referred to as the optimality of
a Kalman filter . Ordentlich’s method also finds that the op-
timal covariance matrix is of rank at most when the noise
process has the th-order moving-average noise spectrum.

Second, Boyd and Ordentlich (circa 1994) found that the
maximization problem for is an instance of a well-known
convex optimization problem called the matrix determinant
maximization (max-det) problem [71, eq. (2.16)]]. For the
case of the nonfeedback capacity corresponding to ,
Shannon’s water-filling solution arises from the KKT condi-
tion for the max-det problem and Szegő’s limit theorem in
a straightforward manner. While the KKT condition for the
feedback case is less manageable, one can compute
numerically with reasonable complexity in , as demonstrated
by Zahedi [79]. See [34, Ch. 4] for analytic implications of the
Boyd–Ordentlich formulation.

Third, Yang–Kavčić–Tatikonda [77] considered Massey’s
directed information [44] and found the structure of the input
distribution maximizing the directed information, or equiva-
lently (see [8, eq. (53)]), found the structure of the optimal

attaining . Using dynamic programming on
the state–space representation of the noise process, a structural
result similar to Ordentlich [50] was obtained, which shows the
optimality of a th-order Kalman filter for the th-order
autoregressive moving-average (ARMA) noise spectrum. This
approach, inter alia, provides yet another numerical tech-
nique for calculating by dynamic programming (linear
complexity in ) that solves a sequentially identical -di-
mensional suboptimization problem in each recursion step.

Finally, in [33] the optimal for the first-order
moving-average noise spectrum was found analytically by a
brute-force maximization method under per-symbol power con-
straints, and then power allocation (over time) was optimized

in asymptotics, establishing the closed-form feedback capacity
formula for the first time.

However, the major stumbling block for all these approaches
of directly attacking the -block capacity is that it is extremely
difficult, if not impossible, to obtain an analytic expression
for the optimal and the corresponding for
each . Indeed, the approach taken in [33] is feasible only
thanks to the simple tridiagonal covariance structure of the
first-order moving-average noise spectrum. And even in this
case, nontrivial tricks had to be developed because it does not
seem tractable to find the optimal under the given
power constraint (1).

In this paper we take an approach that is quite different from
the approached discussed above. Instead of considering
individually for each , we attack its limit directly by charac-
terizing the feedback capacity in the following variational form
(Theorem 3.2):

(6)
where is the power spectral density of the noise process

and the supremum is taken over all power spectral
densities and all strictly causal filters

satisfying the power constraint

Thus, a single infinite-dimensional optimization problem has
the same answer as an infinite sequence of finite-dimensional
optimization problems. At an intuitive level, this characteriza-
tion can be viewed as a justification for the interchange of limit
and maximum in (4) and (5), implicating the asymptotic op-
timality of a stationary (Toeplitz) solution . Refer
to [34, Ch. 3] for a parallel development for the nonfeedback
capacity.

Once equipped with this variational characterization, the
remaining challenge becomes finding the optimal solution

that achieves . Based on techniques
from control and estimation theory, convex optimization, func-
tional analysis, and information theory, we find the structure
of the optimal solution in Theorem 4.1, Proposition
5.1, and Lemma 6.1, which is reminiscent of the struc-
tural results by Ordentlich [50] and Yang–Kavčić–Tatikonda
[77] for the finite-dimensional case. This result, when spe-
cialized to the first-order autoregressive noise spectrum

, , yields a closed-form
expression for the feedback capacity as

where is the unique positive root of the fourth-order
polynomial

establishing the long-standing conjecture by Butman [5], [6],
Tiernan–Schalkwijk [70], [69], and Wolfowitz [73]. In fact, we
will obtain an explicit feedback capacity formula for the first-
order ARMA noise spectrum in Theorem 5.3, which generalizes
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the result in [33] and confirms positively a recent conjecture by
Yang, Kavčić, and Tatikonda [78]. As we will see later, this re-
sult shows that the celebrated Schalkwijk–Kailath coding [60],
[61] achieves the feedback capacity.

More generally, we will show in Theorem 6.1 that a -dimen-
sional generalization of the Schalkwijk–Kailath coding achieves
the feedback capacity for any ARMA noise spectrum of order

.
The literature on Gaussian feedback capacity is vast. Instead

of trying to be complete, we sample the results that are most
relevant to our discussion. A more complete survey can be
found in [33]. The standard literature on the Gaussian feedback
channel and associated simple feedback coding techniques
traces back to Elias’s 1956 paper [16] and its sequels [17], [21].
Schalkwijk and Kailath [60], [61] made a major breakthrough
by showing that simple linear feedback coding achieves the
feedback capacity of the additive white Gaussian noise channel
with doubly exponentially decreasing probability of decoding
error. More specifically, the transmitter sends a real-valued
information bearing signal at the beginning of communication
and subsequently refines the receiver’s knowledge by sending
the error of the receiver’s estimate of the message. This simple
and constructive coding, or no coding in a sense, achieves
the capacity of the Gaussian channel and the resulting error
probability of the maximum likelihood decoding decays doubly
exponentially in the duration of the communication.

This fascinating result has been extended in many directions,
including the feedback communication over the additive non-
white Gaussian noise channel. Butman [5], [6] extended the
Schalkwijk–Kailath coding to autoregressive noise channels.
Subsequently, Tiernan and Schalkwijk [70], [69], Wolfowitz
[73], and Ozarow [51], [52] studied the feedback capacity of
finite-order autoregressive moving-average additive Gaussian
noise channels and obtained many interesting upper and lower
bounds. As mentioned above, Yang, Kavčić, and Tatikonda [78]
(see also Yang’s thesis [76]) recently revived the control-theo-
retic approach (cf. Omura [49], Tiernan and Schalkwijk [70])
to the finite-order autoregressive moving-average Gaussian
feedback capacity problem and brought up several interesting
results. After reformulating the feedback capacity problem as a
stochastic control problem, Yang et al. used dynamic program-
ming for the numerical computation of and offered a
conjecture that can be achieved by a stationary policy for
each iteration in the dynamic programming. Our Theorem 6.1
confirms their conjecture in a somewhat stronger form.

In a more general line of attack, Cover and Pombra [8]
proved the coding theorem for the arbitrary nonwhite Gaussian
channel with or without feedback, using an AEP theorem
for nonstationary nonergodic Gaussian processes. They also
showed that feedback does not increase the capacity much;
namely, feedback at most doubles the capacity (a result obtained
by Pinsker [57] and Ebert [14]), and feedback increases the
capacity at most by half a bit. The extensions and refinements
of the Cover–Pombra result abound. Ihara obtained a coding
theorem for continuous-time Gaussian channels with feedback
[26], [28] and showed that the factor-of-two bound on the
feedback capacity is tight by considering cleverly constructed
nonstationary channels for both discrete [27] and continuous

[25] cases. Dembo [10] studied the upper bounds on
and showed that feedback does not increase the capacity at
very low signal-to-noise ratio or very high signal-to-noise
ratio. (See Ozarow [51] for a minor technical condition on the
result for very low signal-to-noise ratio.) In the aforementioned
work [50], Ordentlich examined the properties of the optimal
solution for in (4) for a fixed and de-
rived the optimality of a -dimensional Kalman filter for the

th-order moving-average noise spectrum. In [33], an alterna-
tive method was developed for the first-order moving-average
noise spectrum and the maximization problem in (4) was
solved analytically under the modified power constraint on
each input signal , . Then, a fixed-point theorem
exploiting the convexity of the problem is deployed to show
the asymptotic optimality of the uniform power allocation over
time, establishing the feedback capacity for this special case.

As is hinted by the similarity between the -block capacity
(4) and the variational characterization (6), the Cover–Pombra
characterization is again the very starting point of our devel-
opment. However, the variational formula (6) certainly has the
flavor of spectral analysis for control and estimation problems,
in the context of which we will find the optimal solution

. This optimal solution will be then linked
to the asymptotic behavior of the linear coding by Schalkwijk
and Kailath. Thus in a sense our development goes in a full
circle through the literature cited above.

The rest of the paper is organized as follows. We will first
establish the variational characterization (6) of the feedback
capacity in Section III. Subsequently, the resulting variational
problem will be solved in several steps. Section IV finds the
sufficient and necessary condition for the optimal
under a general noise spectrum. This optimality condition is
then specialized to the finite-order autoregressive moving-av-
erage (i.e., rational) noise spectrum in Section V. In particular,
for the first-order ARMA noise spectrum, we find a closed-form
expression for the feedback capacity and show the optimality
of the Schalkwijk–Kailath coding. The state-space approach
provides a richer set of tools for analyzing the ARMA noise
spectrum. Section VI is devoted to this approach and character-
izes the feedback capacity as the maximum achievable rate of
a multidimensional variant of the Schalkwijk–Kailath coding.
Section VII concludes the paper with potential connections
to other mathematical problems. Section II recalls necessary
results from various branches of mathematics.

II. MATHEMATICAL PRELIMINARIES

A. Toeplitz Matrices, Szegő’s Limit Theorem, and Entropy Rate

We first review a few important results on spectral properties
of stationary Gaussian processes, which we will use heavily for
the variational characterization of feedback capacity.

Let , , be the
covariance sequence of a stationary Gaussian process .
Then, as the elegant answer to the classical trigonometric
moment problem shows (see, for example, Akhiezer [1] and
Landau [42]), there exists a positive measure on ,
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sometimes called the power spectral distribution of the process
, such that

for all . From the Lebesgue decomposition theorem, we can
write as a sum , where is absolutely con-
tinuous with respect to the Lebesgue measure and is sin-
gular. The Radon–Nikodym derivative of (with respect to
the Lebesgue measure), called the power spectral density of

, exists almost everywhere and can be written as a func-
tion of , or more specifically, we have

for some function analytic on the unit disc
with and on

.
Conversely, given a nontrivial (i.e., supported by infinitely

many points) positive measure , the
Toeplitz matrix of size given by

is positive definite Hermitian. Hence, has positive eigen-
values , counting multiplicity. In his fa-
mous limit theorem [66], [67], Szegő proved an elegant relation-
ship between the asymptotic behavior of the eigenvalues of
and the associated spectral distribution . This result lies at the
heart of many different fields, including operator theory, time-
series analysis, quantum mechanics, approximation theory, and,
of course, information theory. Here we recall a fairly general
version of Szegő’s limit theorem, which can be found in Simon
[64, Theorem 2.7.13].

Lemma 2.1 (Szegő’s Limit Theorem): Let be a continuous
function on such that

Then

The above limit theorem is sometimes called the first Szegő
theorem, in order to be distinguished from the second-order
asymptotics often called the strong Szegő theorem and obtained
by Szegő himself after a 38-year gap [68]. Refer to Grenander
and Szegő [22, Ch. 5], Böttcher and Silbermann [3, Ch. 5], Gray
[20], and Simon’s recent two-part tome on orthogonal polyno-
mials on the unit circle [64] for different flavors of Szegő’s the-
orem under different levels of generality.

As a canonical application of Szegő’s limit theorem, the fol-
lowing variational statement, attributed to Szegő, Kolmogorov
[36], and Krein [39], [40], connects the entropy rate, the spectral
distribution, and the minimum mean-square prediction error of
a stationary Gaussian process.

Lemma 2.2 (Szegő–Kolmogorov–Krein Theorem): Let
be a stationary Gaussian process with a nontrivial

spectral distribution . Then the minimum
mean-squared prediction error
of from the entire past , , is given by

where denotes the differ-
ential entropy rate of the process .

The proof of this result follows almost immediately from
Szegő’s limit theorem with . Note that the
prediction error depends only on the absolutely contin-
uous part of the spectral measure, which follows because

. (The fact that the prediction error is
independent of the singular part of the spectral distribution
can be also proved from somewhat deeper results on shift
operators and Wold–Kolmogorov decomposition. See, for ex-
ample, Nikolski [48] and the references therein.) We stress the
relationship between the entropy rate of a stationary Gaussian
process and its spectral density in the following
familiar expression:

(7)

Throughout this paper, in order to exclude the trivial case
of unbounded capacity, we will assume that the power spectral
distribution of the additive Gaussian noise process is
nontrivial (equivalently, is positive definite for all ), and
that the power spectral density satisfies the so-called
Paley–Wiener condition

(8)

which is equivalent to having prediction error .

B. Hardy Spaces, Causality, and Spectral Factorization

We review some elementary results on Hardy spaces (see, for
example, Duren [12], Koosis [37], Rudin [58, Ch. 17]) that are
needed for analysis of optimal feedback filters. Our exposition
loosely follows two monographs by Partington [53], [54].

Let be an analytic function on
. We say that belongs to the class ,

, if

is bounded for all . Similarly we say that belongs to
the class if
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is bounded. We can easily check that is a Banach space for
.

It is well-known that can be extended to
by taking the pointwise radial limit

which exists for almost all . The extended function belongs
to the standard Lebesgue space on with the
same norm , so that we can consider as a
closed (and thus complete) subspace of . Therefore, we will
identify with its radial extension and use the
same symbol for both and throughout. More specifically,
when we say that a function for belongs
to , we implicitly mean that is also well-defined and
analytic on . Also we will use and interchangeably
if the context is clear. Recall the following relationship among
important classes of functions on :

and

Let , . We say that is causal if its Fourier
coefficients

satisfy for . We also say that is strictly causal
if for , or equivalently, for some
causal . By reversing the direction of the time index,
we also define anticausality and strict anticausality in a similar
way.

If , then (or more precisely, the extension
of in ) can be easily shown to be causal; see Lemma 2.3
below. Conversely, if is causal, then

so that is analytic on , where

(9)

and the series on the right-hand side converges pointwise on .
Therefore, we can identify the class with the class of causal

functions, which gives an alternative definition of the
space.

When , we have the pointwise convergence of the
infinite series (9) on for almost all

. Hence, preserves the causality when acting on
by multiplication. For later use, we stress this simple fact in the
following statement, the proof of which easily follows from the
dominated convergence theorem.

Lemma 2.3: Let and let be causal. Then,
is causal. If, in addition, is strictly causal, then

is strictly causal and

We recall a few important factorization theorems. The first set
of results deals with the factorization of functions. Suppose

, , is not identically zero. Then, has a
factorization that is unique up to a constant of
modulus 1, where is an inner function (i.e., is an
function with almost everywhere) and is an
outer function given by

Consequently, the zeros of in coincide with the zeros of ,
and .

We define the (infinite) Blaschke product formed with
the zeros of as

where are the zeros of in , listed according to their
multiplicity, of them being at . It is easy to check that is
well-defined in the sense that converges uniformly on com-
pact sets to an function. Also, and
almost everywhere. As a refinement of the above inner–outer
factorization theorem, Riesz showed that has a factorization

that is unique up to a constant of modulus
, where is the Blaschke product of the zeros of , is a sin-

gular inner function (without zeros), and is an outer function.
Again .

For our purposes, it is more convenient to introduce a normal-
ized variant of the Blaschke product as

Then, almost everywhere. This nor-
malized Blaschke product is often called an all-pass filter in the
signal processing literature if is finite and .

If and , then has the unique factoriza-
tion , where is the normalized Blaschke
product formed with zeros of in and does not have
any zero in . In particular, . Now Jensen’s
formula [58, Theorem 15.18] states that, if with

, then

where denote the zeros of within the circle of
radius . Therefore

(10)
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As a trivial corollary, if is rational of the form

with all zeros of strictly outside the unit circle, then

where denote the zeros of in .
Our last factorization theorem is concerned with the factoriza-

tion of positive functions and is usually called the canonical
factorization theorem. Suppose . Then,

for some if and only if al-
most everywhere and the Paley–Wiener condition (8) is satis-
fied. In light of the aforementioned factorization theorem due
to F. Riesz, we can always take the canonical factor with no
zeros inside the unit circle and .

C. Discrete Algebraic Riccati Equations

Discrete algebraic Riccati equations (DAREs) often play
a crucial role in many estimation and control problems. Our
problem is no exception, especially in the state-space approach
for the ARMA( ) feedback capacity in Section VI.

Here we focus on a very special class of Riccati equations
and review a few properties of them. Since the necessary re-
sults are somewhat scattered in the literature, we also provide
short proofs along with probabilistic interpretations; some of
these might be new. Whenever possible, however, we will refer
to standard references. For a more general treatment, refer to
Kailath, Sayed, and Hassibi [32] and Lancaster and Rodman
[41].

Given matrices and , we study the
following discrete algebraic Riccati equation:

(11)

For each Hermitian matrix , define

We are concerned with solutions of (11), especially the ones
with stable .

Lemma 2.4 (DARE): Suppose has no unit-circle eigenvalue
and is detectable, that is, there exists such
that is stable (i.e., every eigenvalue of lies
inside the unit circle). Then, the following statements hold.

i) is a solution to (11).
ii) There is a unique solution to (11) such that

is stable. Furthermore, for any other
satisfying (11). In particular, is positive semidefinite.

iii) If is invertible, then is invertible for each
solution and

iv) Let . If has eigenvalues with
, then

has eigenvalues , .
v) If every eigenvalue of lies inside the unit circle, then the

stabilizing solution is identically zero. Thus,
is the unique positive semidefinite solution to the DARE
(11).

vi) If every eigenvalue of lies outside the unit circle, then
.

vii) More generally, suppose has eigenvalues outside the
unit circle and eigenvalues inside the unit circle.
Then, .

Proof:
i) Trivial.

ii) Refer to [32, Theorem E.5.1].
iii) Note that . Now

simple algebra reveals that .
iv) For simplicity, we assume that is invertible. We can

easily check that

for any solution , which implies that the eigenvalues
of coincides with those of

. Now the desired result follows from the fact
that is stable.

v) Refer to [32, Theorem E.6.1].
vi) Refer to [32, Theorem E.6.2].

vii) For simplicity, suppose can be diagonalized; the gen-
eral case can be proved by using the generalized eigen-
vectors associated with the Jordan canonical form of .
Take each eigenvalue–(right) eigenvector pair of
with . Suppose . Then, we can easily
check that , which violates
the stability of . Thus, , which im-
plies . On the other hand, take each eigen-
value–eigenvector pair of with . From
(11), we have

or equivalently

Since both terms of the above sum are nonnegative, we
must have , which implies .



KIM: FEEDBACK CAPACITY OF STATIONARY GAUSSIAN CHANNELS 63

Algebraic Riccati equations naturally arise from asymptotic
behaviors of recursive filters (e.g., Kalman filters). In the fol-
lowing lemma, we collect a few results on the convergence of
the Riccati recursion.

Lemma 2.5 (Discrete Riccati Recursion): Under the same as-
sumption on as in Lemma 2.4, suppose is de-
fined as

(12)

for some . Then, the following statements hold:
i) If , then for all .

ii) If , then for all .
iii) If , then for all .
iv) If , then , where is the unique

stabilizing solution to the DARE (11).
Proof:

i) Trivial.
ii) Let and write

(12) as

iii) Refer to Caines [7, Theorem 3.5.1].
iv) Let be the unique solution of the Lyapunov equa-

tion

(13)

(Lemma 2.4 guarantees the stability of and
hence there exists a unique positive semidefinite sat-
isfying (13).) Take any such that and

is nonsingular. Now from [32, Lemma
14.5.7], we have

which implies the exponential convergence of to
by [32, Theorem 14.5.2].

Although our approach so far has been mostly algebraic, we
can give probabilistic interpretations of the above results in the
context of linear stochastic systems. Since is detectable,
we will take some such that is stable. Consider the
following state–space representation (see, for example, Kailath
[31]) of a stationary Gaussian process :

(14)

where are independent and identically distributed
zero-mean unit-variance Gaussian random variables, and the
state is independent of for each . It is easy to see that

corresponds to the filter output of the input process
through a linear-time invariant filter with transfer

function

(15)

Consider the state–space representation for the innovations
. Write and

. Define as
before. Then, we can check through a little algebra that

which implies that

Clearly, there must be a unique solution to the above equa-
tion that makes the above state–space representation well-de-
fined; this implies Lemma 2.4 ii).

Note that is the output of via the
filter

On the other hand, the innovations process is
white. Therefore, should be a normalized Blaschke
product (all-pass filter), which implies Lemma 2.4 iv). Fur-
thermore, since , applying Jensen’s
formula, we have a stronger version of Lemma 2.4 iii). The
rank condition on in Lemma 2.4 vii) can be viewed as
how many “modes” of the state can be causally determined
by observing the output. Our development also gives a special
case of the Szegő–Kolmogorov–Krein theorem. For example,
if is invertible

where the last equality can be justified by the canonical factor-
ization theorem and Jensen’s formula.

Now we consider a slightly nonstationary Gaussian process
, recursively defined by the same state–space (14), but

under the different initial condition and .
Let denote the linear transformation from to

that corresponds to this state–space model. It is
easy to see that is Toeplitz (with respect to the natural basis
on ) and, in fact

(16)
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where is the very transfer function in (15). Since
is lower triangular with diagonal entries equal to and thus

for all , the entropy rate of is given as

(17)

which is strictly less than the entropy rate

(18)

of the stationary process under the same state–space rep-
resentation (14), provided that has an eigenvalue outside the
unit circle.

The nonzero gap between the entropy rate of the sta-
tionary process and the entropy rate of its non-
stationary version can be understood from a beautiful
result on Toeplitz operators by Widom; see Böttcher and Silber-
mann [3, Prop. 1.12, Prop. 2.12, and Example 5.1]. We use the
notation to denote the Toeplitz operator associated with
symbol as in (16) and to denote the finite
truncation of . Since the power spectral density of the sta-
tionary process is , our previous discussion on
Toeplitz matrices and the trigonometric moment problem shows
that the covariance matrix of is simply .
On the other hand, from our construction of the nonstationary
process , the covariance matrix of is given as

. Now Widom’s theorem states that

where is the Hankel operator associated with
symbol and is given by

(This result should not be confused with the Wiener–Hopf fac-
torization ; see [3, Section 1.5].) Thus,
the Hankel adjustment term contributes to the strict gap
between the entropy rates in (17) and (18). We can represent

for some nonstationary process with
infinite covariance matrix such that .
Roughly speaking, the perturbation process with bounded
total power causes a strict boost in the entropy rate. (Although
our is rational, this phenomenon generalizes to any in Krein
algebra, in which case is a trace class operator [3, Sec-
tion 5.1].)

Finally we remark that our previous discussion on the Riccati
recursion implies a much stronger result on the boost of the
entropy rate due to small perturbation. Consider

where has a positive definite covariance matrix
and for all . Lemma 2.5 iv) shows that the entropy
rate of is , and hence any tiny
perturbation to the nonstationary process results in the entropy
rate of the stationary version. Later, this phenomenon gives an
alternative interpretation of the role of message-bearing signals
in feedback communication.

The following example illustrates our point. Define a process
as

where is a constant with . Then, the entropy rate of
the process is , although is sta-
tionary with entropy rate . Now define
as

where is an arbitrary constant and is in-
dependent of . Then, the entropy rate of the perturbed
process can be easily shown to be . Evidently, the
entropy rate is discontinuous at and any tiny perturbation
results in the same amount of boost in the entropy rate.

D. Matrix Inequalities

We recall the following facts on positive semidefinite Her-
mitian matrices. Proofs can be found in standard references on
matrix analysis (see, for example, Gantmacher [19] and Horn
and Johnson [24]) or can be derived easily from the related re-
sults therein.

Lemma 2.6: Suppose a Hermitian matrix is partitioned as

where and are Hermitian. Further suppose is positive def-
inite. Then is positive semidefinite if and only if
is positive semidefinite.

Lemma 2.7: Suppose is positive semidefinite
Hermitian. Then

with equality if and only if .

Lemma 2.8: Suppose and are positive semidefinite Her-
mitian matrices of the same size. Then

Furthermore, the following statements are equivalent:
i) .

ii) .
iii) There exist a unitary matrix and diagonal matrices ,

such that , , and .

III. VARIATIONAL CHARACTERIZATION OF GAUSSIAN

FEEDBACK CAPACITY

In this section, we present a variational characterization of
the Gaussian feedback capacity as the solution to an infi-
nite dimensional optimization problem. Our starting point is the
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following result by Cover and Pombra [8, Theorem 1], stated
for stationary noise processes:

Lemma 3.1 (Cover–Pombra Theorem): Given a stationary
Gaussian process with , let

where the maximum is over all positive semidefinite
and strictly lower triangular such that

Then the feedback capacity of the stationary Gaussian channel
, , under power constraint , is

The following properties of the feedback capacity will be
useful later, which are easy consequences of the Cover–Pombra
theorem and are proved in [8, Theorem 3] and [75]:

Proposition 3.1: The feedback capacity as a func-
tion of the power constraint is concave and strictly increasing
in , and satisfies

where is the nonfeedback capacity under the same power
constraint .

While we do not repeat the proof of the Cover–Pombra the-
orem here (see [8, Sections VI and VII]), we examine closely
the main ideas that are instrumental to the variational character-
ization in Theorem 3.2 later.

First note that the quantity corresponds to the max-
imum mutual information between the message index and
the channel output

(19)

which is maximized over all of the form ,
with strictly lower triangular and multivariate Gaussian

, independent of , satisfying the power constraint
. Since , we have

Thus can be viewed as the maximum mutual informa-
tion between the channel output and the auxiliary channel
input over all strictly causal linear feedback

(20)

satisfying the power constraint .
The achievability of over the sequence of chan-

nels , , follows
from the asymptotic equipartition property for arbitrary
nonstationary nonergodic Gaussian processes [8, Theorem
5], [55]. Note that the usual stationary ergodic AEP (the
Shannon–McMillan–Breiman theorem) is not applicable since
the optimal (or the corresponding ) is not necessarily
stationary ergodic. (Alternatively, we can prove the achiev-
ability by recasting (19) as Massey’s directed information

[44] and applying the coding theorem proved in
[35].)

For the proof of the converse, it can be shown that the
maximum of (19) over all causal feedback encoding functions

, or equivalently, , can be attained
over all Gaussian linear feedback input distributions of the
form (20). This is a consequence of the usual maximum entropy
argument for under the given covariance constraint for

and of the following little lemma that is hidden
in the original proof in [8].

Lemma 3.2: Suppose that zero-mean random vectors
form a Markov chain and

(21)

for some linear function (matrix) and random vector in-
dependent of . Let be jointly Gaussian zero-
mean random vectors with the same covariance as .
Then, also form a Markov chain.

Proof: Let
be the best linear estimator of given minimizing

the mean square error . Since is also the best linear
estimator of given , and and are uncorrelated,
should be zero and .

Now focusing on the Gaussian version with the
same covariance matrix, we note that the best linear estimator
depends only on the covariance matrix, that the best nonlinear
estimator (conditional expectation) is linear for jointly Gaussian
random vectors, and that the conditional distribution of given

is also Gaussian. Hence, , which
proves the desired Markovity .

In other words, the Markovity is a second-moment property
for a random triple satisfying (21). (The condi-
tion (21) is crucial; in general, the Gaussian version of a Markov
chain under the same covariance structure is not necessarily
Markov.)

As a corollary of this lemma, consider any feedback en-
coding function , . For each ,
we have . Also can be represented as

, where is independent of .
Thus, from Lemma 3.2 we can construct a jointly Gaussian
version with the same covariance structure that
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satisfies the desired Markovity for each
, i.e., , with independent of .

The corresponding Gaussian maximizes the
entropy in (19).

For each , the optimization problem for can be
reformulated by the change of variable

, which results in the following convex opti-
mization problem [71, eq. (2.16)] due to Boyd and Ordentlich
(circa 1994):

maximize

subject to

strictly lower triangular (22)

(Here the linear matrix inequality constraint follows from
Lemma 2.6.)

This optimization problem is an instance of matrix determi-
nant maximization under linear matrix inequality constraints
[71] and the optimal solution (or equivalently,

) can be characterized via convex duality. In partic-
ular, we can show that the optimal water-fills the new noise
spectrum (so as to maximize )
and that the optimal filter makes the input signal orthogonal
to the past output, i.e., should be
upper-triangular (why waste power to convey something that
is already known to the receiver?). When specialized to the

th-order ARMA noise spectrum, this observation implies that
should be of rank , which in turn implies an important

structural property of from the orthogonality [50], [77], [34,
Ch. 4].

From a numerical point of view, the duality result developed
above gives the “solution” to the -block feedback capacity
problem, since there is a polynomial-time algorithm for the de-
terminant maximization problem (22), based on the interior-
point method. (See Nesterov and Nemirovskii [47] and Vanden-
berghe et al. [71].) In fact, Zahedi [79] developed a numerical
solver that can handle arbitrary covariance matrices of size, say,

, with moderate computing power.
As for the (infinite-block) feedback capacity, however, there

is still much to be done, even numerically. First, the above
duality theory is for a finite block size , however large it
may be. Since the limit is approached
from below without any convergent sequence of upper bounds,
even the exact computation of for very large does
not provide a computable characterization of . Second,
the sequence of optimal is not necessarily con-
sistent, that is, is not necessarily a subblock of

. Hence, a priori it is unclear whether the
optimal solution is (asymptotically) stationary or Toeplitz. The
question of the asymptotic optimality of stationarity becomes
more challenging when we limit our attention to solutions
that satisfy the optimality condition—in general, there is no
stationary that satisfy water-filling condition and
orthogonality. Finally, the optimality condition for
has both temporal and spectral components (water-filling and

orthogonality), and consequently, it seems very difficult, if not
impossible, to derive an analytic solution for even
for small ; cf. [9, Section 9.5] for the nonfeedback case.

Thus motivated, we move on to the main theme of this sec-
tion—the variational characterization of the feedback capacity.

Theorem 3.2: The feedback capacity of the additive Gaussian
noise channel , , under the power
constraint , is

where is the power spectral density of , and the
supremum is taken over all and all strictly causal

satisfying the power constraint

Proof: Let denote the information capacity

In light of the Szegő–Kolmogorov–Krein theorem, we can ex-
press also as

where the supremum is taken over all stationary Gaussian pro-
cesses of the form where

is stationary and independent of such that
.

We first show that

(23)

for all . Fix and let achieve . Consider a
process that is independent of and block-
wise white with , independent and
identically distributed (i.i.d.) . Define a process

as for all .
Let , , be the corresponding
output process through the stationary Gaussian channel; hence

for all . Then

(In case is singular and is ill-defined, we can con-
sider a sequence of nonsingular that achieves in the
limit, as in the proof of the Cover–Pombra theorem [8, Theorem
1].)

By repeating the same argument, we have
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for all , which implies that

(24)

where absorbs the edge effect.
For each , define the time-shifted process

as for all , and similarly define
, , and . Then using a

similar argument as in (24), we have

for all , and each .
We now introduce a random variable , uniformly distributed

over and independent of everything else. It is
easy to check the following.

i) is stationary with
.

ii) has the same distribution as .
iii) has the average power upper bounded by

iv) form a Markov chain
for all , , because

where the inequality follows since is sta-
tionary and hence

Finally, define to be a jointly Gaussian
process with the same mean and autocorrelation as the sta-
tionary process . It is easy to
check that also satisfies the properties i)–iv); in
particular, the Markovity iv) follows from Lemma 3.2. There-
fore, from these properties and the Gaussianity of ,
there must exist a stationary Gaussian process and

such that . Thus,

Since the singular part of the power spectral distribution of the
process would not contribute to while consuming
the power, we can assume without loss of generality that the

process has an absolutely continuous power spectral dis-
tribution. Letting and using the definition of , we
get

For the other direction of the inequality, we use the notation
and to stress the dependence of feedback

capacity on the power constraint . Given , let
achieve under the power

constraint . The corresponding channel output is

Now, we define a single-sided nonstationary random process
as

where are i.i.d. , independent of and
. Thus, depends causally on for all . Let

be the corresponding channel output . Since
for and

for , we have

Also, since
and for

Consequently, for sufficiently large

and

Therefore, we can conclude that

for sufficiently large, whence

Taking and using Proposition 3.1, we get

which, combined with (23), implies the desired result
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One implication of the above proof is that we can limit
our attention to the class of stationary solutions
or . (Note that in general and cannot be
simultaneously Toeplitz under a Toeplitz matrix .) The cost
of this simplification is, however, that the optimality condition
for becomes no longer relevant after this stationariza-
tion technique. For example, the optimality of rank-
does not necessarily imply the asymptotic optimality of a
rank- Toeplitz . Furthermore, adding the stationarity
constraint does not lead to a simpler analytic characterization
of . Therefore, it is inevitable that we should set
aside the previously known results on the finite-block feedback
capacity [50], [77] and attack the variational problem in The-
orem 3.2 rather directly. Compared to the finite-optimization
problem for , this infinite-dimensional problem poses
several technical challenges. Thus, we characterize the optimal

over Sections IV–VI at different levels of generality.

IV. OPTIMAL FEEDBACK CODING

Equipped with Theorem 3.2, our next goal is to solve the re-
sulting infinite-dimensional optimization problem:

maximize

subject to

strictly causal

(25)

While characterizing the optimal solution in a com-
pletely analytic expression seems out of reach, we show that
one can take without loss of generality and find a suf-
ficient and necessary condition for the optimal solution that can
be easily verified. In particular, we will prove the following the-
orem.

Theorem 4.1: Suppose the power spectral density of
the Gaussian noise process is bounded away from zero,
i.e., , and has a canonical spectral factoriza-
tion . Then, the feedback capacity of the
additive Gaussian noise channel , ,
under the power constraint , is

(26)

where the maximum is taken over all strictly causal sat-
isfying the power constraint

Furthermore, attains the maximum in (26) if and only if
i) Power:

ii) Output spectrum:

iii) Strong orthogonality: For some

is causal.

One important aspect of the theorem is the existence of the
optimal solution and its characterization via conditions
i)–iii). The condition iii) deals with the canonical factorization
of and is reminiscent of the Wiener–Hopf solution for
causal filtering. The stipulation that is bounded away
from zero should not incur much loss of generality, for we can
always perturb the noise spectrum by a small amount of power.

The proof of Theorem 4.1 requires several auxiliary propo-
sitions, which are interesting and useful on their own. To sim-
plify the notation, we will omit the argument from functions
on . We use to denote the com-
plex conjugate of . Since we only consider ,

, with real Fourier coefficients, . In the
same vein, we use as a shorthand notation for .

Recall that the optimization problem (25) is equivalent to
the maximization of the entropy rate of the stationary process

given by , over all stationary processes
of the form . Whenever

necessary, our discussion will resort to the context of stationary
processes and corresponding entropy rates.

We start by studying the properties of an optimal solution
to the optimization problem (25).

Proposition 4.2 (Necessary Condition): Suppose
attains the maximum for the optimization problem (25). Then
the following must hold.

i) Power: .
ii) Output spectrum: , where

.
iii) Water-filling: water-fills the modified noise spectrum

, that is, a.e.
iv) Weak orthogonality: The current input is independent

of the past output . Equivalently

is causal.
Furthermore, if is bounded away from zero, then there exist

and attaining the maximum of (25).
Proof: Necessity of i) and iii) is obvious; since each fixed

gives a nonfeedback channel with the
input spectrum , the optimality conditions for the non-
feedback capacity apply. See, for example, [34, Ch. 3].

For the condition ii), suppose . Then for each ,
there exists such that on . Let
on and 0 elsewhere. Now consider a feasible solution

with corresponding output spectrum and
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power constraint , where is the Lebesgue
measure of . It is easy to see that

But dividing both sides by the power increase and
taking , we see that is unbounded, which contra-
dicts the facts that is concave and hence that

for .
The orthogonality condition iv) is also intuitively clear; there

is no reason to spend power to send something that is already
in the linear span of previous output symbols. To verify this
intuition rigorously, we use the following perturbation method
similar to Ordentlich’s fixed-point argument [50, Presentation
slides] developed to find the optimality condition for the finite-
dimensional case . Suppose is not
causal. Then

for some . Let with . Consider
. Since the

corresponding output spectrum

the entropy rate stays the same for by Jensen’s formula (10).
On the other hand, the power usage becomes

where is the original output power. Since
is quadratic in with the leading coefficient , we

can choose small with appropriate sign so that .
But this implies that achieves the same entropy rate
as the original using strictly less power. This contra-
dicts the optimality of and hence we have the causality
of .

The proof of the existence of the optimal is rather
technical, so it will be given in Appendix A.

Although the conditions i)–iv) are not sufficient and fall short
of tighter conditions in Theorem 4.1, we can deduce several
interesting observations from them.

Corollary 4.3: Feedback does not increase the capacity if and
only if is constant (i.e., the noise spectrum is white).

Proof: Shannon’s 1956 paper shows that feedback does not
increase the capacity for memoryless channels, taking care of
the sufficiency. (See also Kadota, Zakai, and Ziv [29], [30].)

For the necessity, we assume that is bounded away from
zero without loss of generality. Indeed, we can use a small
amount of power to water-fill the spectrum first, then use the
remaining power to code with or without feedback. If the stated
claim is true, then feedback increases the capacity for the
modified channel and hence for the original channel. (For the
nonfeedback coding, there is no loss of optimality in dividing
the power into two parts and water-filling successively.)

Proceeding on to the proof of the necessity, suppose non-
feedback capacity is the same as the feedback capacity and is
achieved by . Then achieves the feed-
back capacity. But, from the condition iv) of Proposition 4.2,

is causal and hence is white. Therefore, , whose water-filling
spectrum is white.

Corollary 4.4: Suppose attains the maximum for
the optimization problem (25). Then, there exists such that

and

In particular, is also an optimal solution to (25).
In order to prove Corollary 4.4, we need the following simple

result, which essentially establishes the optimality of the orig-
inal Schalkwijk–Kailath coding for the additive white Gaussian
noise channel.

Lemma 4.1: Suppose the noise spectrum is white with
. Then, the choice of and

(27)

with achieves the feedback capacity

under the power constraint . Furthermore, the
resulting output spectrum is given by

Proof: We first check that

On the other hand, since
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we have

Clearly, we have achieved .

The choice of the feedback filter (27) is far from unique; for
example, we can use (check!) any causal filter derived from the
normalized Blaschke product as

(28)

where is an arbitrary sequence of positive integers and
is a sequence of real numbers such that for

all and .
Now we move on to the proof of Corollary 4.4.

Proof of Corollary 4.4: Suppose

and

We assume ; otherwise, there is nothing to prove.
We argue that must be white. Assume

the contrary and consider the Gaussian feedback channel with
the noise spectrum under the power constraint . But from
Corollary 4.3, is strictly dominated by some
with nonzero . Hence, for the original channel, we have a
two-stage solution with the corre-
sponding output entropy higher than that of the original ,
which contradicts the optimality of .

Now suppose the white spectrum has the
power, say, . From the water-filling condition iii) in Propo-
sition 4.2, and the resulting output spectrum

. On the other hand, from Lemma 4.1, we can achieve
the feedback capacity for the new channel by

using , .
Consequently, we can achieve the feedback capacity of the orig-
inal channel through a two-stage strategy: first transform the
channel into using , and then use for the white spectrum

. The corresponding combined filter is given by

and achieves the feedback capacity with the same
output spectrum .

Remark 4.5: We can in fact make a stronger statement—if
is nonwhite, then must be zero. To see this, first note from
the above proof that, if is nonzero, then and

, as well as should be white. Now from the orthogonality
condition iv) in Proposition 4.2,

is causal, or equivalently, is causal,
which is true only if is white.

The essential content of Corollary 4.4 is that we can restrict
attention to the solutions of the form , even in the case the
maximum in (25) is not attainable. Indeed, we can easily modify
the proof of Corollary 4.4 to show that for any solution ,
there exists another solution such that the corresponding
output entropy rate is no less than the original output entropy
rate under the same power usage. This observation yields the
following simplification of Theorem 3.2.

Theorem 4.6: The feedback capacity of the additive Gaussian
noise channel , , under the power
constraint , is

where is the power spectral density of and the
supremum is taken over all strictly causal satisfying the
power constraint

Equipped with Corollary 4.4, we are ready to show that the
strong orthogonality condition is necessary, which completes
the proof of the necessity part of Theorem 4.1.

Proposition 4.7 (Necessity of the Strong Orthogonality):
Suppose is bounded away from zero and

attains the maximum for the optimization
problem (25). Let . Then
there exists a such that

is causal.
Proof: Consider the Lagrangian

for the optimization problem (25). Since is concave
in (recall Proposition 3.1), if attains the max-
imum under the power constraint , then

for all for some . In
particular

for all and . This implies that

at , or equivalently
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(Here the interchange of the order of differentiation and integra-
tion is justified by the bounded convergence theorem.) Hence,

is causal (and in
).

To see that , we use another simple variational method.
For each , let be such that

on . Let on and 0 elsewhere. Now from the
optimality of , we have

which implies

Taking , we get the desired result.

Now we move on to the sufficiency part of Theorem 4.1.
We reformulate the original infinite-dimensional optimization
problem (25) as a convex optimization problem by the change
of variable

maximize

subject to

strictly causal

(29)

Note that this optimization problem is an infinite-dimensional
analogue of the matrix determinant maximization problem (22)
for . However, it is often very difficult to establish the
strong duality for infinite-dimensional optimization problems,
even when the problem is convex. (See Ekeland and Temam
[15].) Here we avoid using the general duality theory on topo-
logical vector spaces and take a rather elementary approach to
duality, which turns out to be powerful enough to characterize
the optimal solution in a reasonable form.

Assume that is bounded away from zero with
canonical factor . Then from Proposition 4.2, the max-
imum in (29) must be attained by some and .

Take any , , and such that

(30)

(31)

(32)

(33)

is causal (34)

and

(35)

Since any feasible and satisfy

we have from Lemma 2.8 that

Since for all , by taking

(36)

Furthermore, since is causal and is strictly
causal, is strictly causal; recall Lemma 2.3. (Indeed,

since the first factor is
while the second factor is .) Hence

(37)

By integrating both sides of (36), we get

(38)

where the second inequality follows from the power constraint
in (29) and the last equality follows from (37).

In summary, we have derived a general upper bound on the
feedback capacity as follows.

Proposition 4.8: Suppose the noise power spectral density
is bounded away from zero and has the canonical spectral

factorization . Then, the feedback capacity
under the power constraint is upper bounded by

for any , and satisfying
(30)–(35).

While this upper bound might be of potential use in itself, for
now the major utility of the upper bound lies in the characteriza-
tion of the optimal solution . Tracing the equality conditions
in (38), we can establish the following sufficient condition for
the optimality of a specific feedback filter .
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Proposition 4.9 (Sufficient Condition): Suppose the power
spectral density is bounded away from zero and has a canon-
ical spectral factorization . Then , along with

, attains the maximum in (29) if all of the
following hold:

i) Power: .
ii) Output spectrum: .

iii) Strong orthogonality: For some

Proof: Let . Let

(39)

It is straightforward to verify that , , , , and de-
fined above satisfy the conditions (30)–(35). Moreover, from the
strong orthogonality condition iii)

is causal.
Now, it is easy to check that

which makes the second inequality of (36) an equality. On the
other hand, (39) makes the first inequality of (36) an equality,
while the power condition i) makes the second inequality in (38)
an equality. Combining these three equality conditions, we have
the equality in (38), and hence the optimality of satisfying
i)–iii).

To conclude this section, we remark that although the condi-
tions i)–iii) in Theorem 4.1 characterizes the optimal feedback
filter , this characterization is rather implicit and still falls
short of yielding what can be called a closed-form solution for
the feedback capacity problem (26). In Sections V and VI, we
find more explicit answers by narrowing our attention to special
classes of noise models.

V. OPTIMAL FEEDBACK CODING FOR THE ARMA NOISE

In this section and Section VI, we focus on a rational power
spectral density , or equivalently, an autoregressive
moving-average noise process with finite order, say,

. More specifically, we assume that the noise power spec-
tral density has the canonical spectral factorization

, where

(40)

such that at least one of the monic coprime polynomials
and has degree and all zeros of and lie strictly
outside the unit circle (i.e., both and are stable). In
particular, is bounded away from zero. Note that ra-
tional power spectral densities with no unit circle zero are dense
(in sense) in the space of all power spectral densities, so the
feedback capacity of any noise spectrum can be approximated
arbitrarily close by the feedback capacity of some rational noise
spectrum.

We first prove a proposition on the structure of the optimal
output spectrum, which is a direct application of Theorem 4.1.

Proposition 5.1 (Optimal Feedback for the ARMA Noise):
Suppose the noise power spectral density is , where

is defined as (40) and is not white (i.e., not identically
1). Then the feedback capacity in (26) of Theorem 3.2 is
necessarily achieved by a filter of the form

(41)

where is a stable polynomial of degree
at most and

is a normalized Blaschke product of at most zeros. In partic-
ular, the corresponding output spectrum is

where . Furthermore, a filter of the
form (41) is optimal if and only if the following hold:

i) Power:

ii) Output spectrum: For all zeros of

where .
iii) Factorization:

has a factor .

Remark 5.2: From the structure of the optimal , the feed-
back capacity can be characterized as

where the maximum is taken over all -degree polynomials
with zeros inside the unit circle
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and all polynomials with degree at most such that
given by (41) satisfies the power constraint

Proof of Proposition 5.1: We first prove the optimality of
the structure (41). Since is bounded away from zero, the
supremum is attained by a strictly causal . From the weak
orthogonality condition iv) in Proposition 4.2

is causal. Now consider

Since and are polynomials of degree at most , and
and are causal, it is easy to see that is of the form

that is

for . But from the symmetry , this
implies that is of the form

or equivalently, has the canonical factorization
for some stable monic polynomial of degree

at most . Therefore

by the inner-outer factorization theorem in Section II-B. Since
, , are all stable polynomials, must be of the form

for some normalized Blaschke product
with (potentially an infinite number of) zeros such that

.
Furthermore, from the strong orthogonality condition iii) of

Theorem 4.1

(42)

should be causal (i.e., analytic inside the unit disc ). This im-
plies that has a factor , i.e.

for every zero of , which in turn implies that
has a factor (since has a factor ). But
by symmetry, should have a factor as well.
Since is a rational spectrum with degree at most

, , or equivalently, cannot have more than zeros,
which completes the proof of the optimality of the structure (41).

To prove sufficiency and necessity of conditions i)–iii), we
first note that the output spectrum condition ii) and the strong
orthogonality condition iii) of Theorem 4.1 can be simplified as
the condition that there exists
such that we have the function shown at the bottom of the page
is causal. Or equivalently, has a factor for some

, i.e.

for all zeros of (condition ii) of the current proposition)
and

has a factor (condition iii) of the current proposition).
Since the power condition i) is trivially equivalent to the cor-
responding condition i) in Theorem 4.1, we have the desired
proof.

As the simplest application of Proposition 5.1, we consider
the first-order autoregressive moving-average noise spectrum,
defined by

(43)

for and . (The case can be
taken care of by the canonical spectral factorization and proper
scaling.) This spectral density corresponds to the stationary
noise process given by

where is a white Gaussian process with zero mean
and unit variance.

Theorem 5.3: Suppose the noise process has the
power spectral density defined in (43). Then, the feed-
back capacity of the additive Gaussian noise channel

, , under the power constraint , is



74 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

where is the unique positive root of the fourth-order
polynomial

(44)

and

.

Proof Sketch: Without loss of generality, we assume
; for the case , we can perturb the noise spectrum

with small power to transform it into another ARMA (1) spec-
trum with . Under the assumption , is
bounded away from zero, so we can apply Proposition 5.1.

Here is the bare-bones summary of the proof. We will take
the feedback filter of the form

(45)

where is an arbitrary parameter corresponding to each
power constraint under the choice of

(46)

Then, we can show that satisfies conditions i)–iii) in
Proposition 5.1 under the power constraint

The corresponding output spectrum is given by

(47)

which results in the information rate

The rest of the proof is an actual implementation of this idea,
which is given in Appendix B.

We can interpret in several ways the optimal feedback filter
we found in (45). First, we show that the celebrated

Schalkwijk–Kailath coding is asymptotically equivalent to our
feedback filter , establishing the optimality of the Schalk-
wijk–Kailath coding for the ARMA (1) noise spectrum.

Consider the following coding method over the Gaussian
channel with the noise spectral density
given by (43). Let . The transmitter initially sends

(48)

and subsequently sends

(49)

where , is the unique positive root of the
fourth-order polynomial (44), and

is the minimum mean-squared error estimate of given the
channel output signals .

For all , we have

(50)

(51)

Furthermore, since with white
, we can show that

for large , which, combined with (51), implies that

(52)

for large . When , that is, when the noise spectrum is
nonwhite, (52) is equivalent to

(53)

Now by taking for (50) and the orthogonality of
and

(54)

where is the innovation of
the output process at time . Also from (52) and the orthog-
onality of and , we have

where
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Finally, returning to (54), we can easily see that

where and are the constants given by (44) and (46). There-
fore, the feedback coding (48) and (49) is asymptotically equiv-
alent to filtering the noise through the feedback filter

which is exactly equal to the optimal feedback filter (45) we
found in the proof of Theorem 5.3.

For a more rigorous analysis, we can also show that

while

under the coding scheme (49). Recall that

and define

for , and

Clearly, can be represented as a linear combination of
and therefore, for any ,

(55)

Now we express

and

where and

By taking in (55), we can easily verify that

whence

and

On the other hand

which converges to

The coding scheme described above uses the minimum
mean-square error decoding of the message , or equivalently,
the joint typicality decoding of the Gaussian random codeword

, based on the general asymptotic equipartition property of
Gaussian processes shown by Cover and Pombra [8, Theorem
2]. It is fairly straightforward to transform the Gaussian random
coding to the original (constructive) Schalkwijk–Kailath
coding. Here we sketch the standard procedure. A detailed
analysis is given in Butman [5], [6].

Instead of the Gaussian codebook , divide the interval
into equal-length “message intervals” and repre-

sent each message by the midpoint of its
interval with distance between neighboring mes-
sages. The transmitter initially sends the signal and
subsequently sends (up to the same scaling as before)
at time , where is the minimum variance unbiased linear
estimate of given . Now we can verify that the optimal
maximum-likelihood decoding is equivalent to find that
is closest to , which results in the error probability

where is the unique positive root of (44), is a constant
independent of , and

is the complementary error function. Now we can easily see
that decays doubly exponentially fast as long as

. Finally note that the doubly exponential decay
of error probability can be raised to an arbitrary higher order
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by modifying the adaptive power allocation scheme by Pinsker
[56], Kramer [38], and Zigangirov [80]. Also note that (50),
(51), and (53) give interesting alternative interpretations of the
Schalkwijk–Kailath coding; the optimal transmitter refines the
receiver’s knowledge of any past input (50), or equivalently, any
past noise (51). Asymptotically, the optimal transmitter sends
the difference between what he knows about the upcoming noise
and what the receiver knows about it (53).

We now recast the optimal feedback coding from another
angle, which will be fully developed in Section VI. Consider the
following state–space model of the ARMA (1) noise process:

where are independent and identically distributed zero-
mean unit-variance Gaussian random variables, and the state
is independent of for each . It is easy to check that this
state–space model represents the noise spectrum

(43)

For simplicity, we consider a slightly nonstationary noise model
by assuming . One can prove that this does not
change the feedback capacity [33, Appendix], which implies
that the Gaussian feedback channel with the noise
spectrum (43) is asymptotically equivalent to the intersymbol
interference channel

where is the Fourier coefficient of the whitening filter

and is the white innovations process.
Consider the following coding scheme, which is “stationary”

from time 2. At time 1, the transmitter sends
to learn and subsequently sends

(56)

where

and is the unique positive root of (44).
We can easily prove the optimality of this coding scheme

from our previous analysis of the coding scheme (49). Indeed,
it is straightforward to transform the refinement of the message

in (49) to the refinement of the noise state in (56) and vice
versa. However, the direct analysis has two important benefits.
First, as we will see in Section VI, the optimal feedback coding
scheme for a general finite-order ARMA channel can be repre-
sented most naturally as the refinement of current noise state.

Second, we can interpret the role of the message bearing signal
as a perturbation to boost the output entropy rate; refer to

Section II-C for background materials.
For the analysis of the feedback coding (56), we introduce the

notation

and similarly define and
. Under this notation, we can express the channel

output as

Let and . Then, we have

where

From this we get the state–space model for as

which implies the following recursive relationship for and
for :

and

(57)

We recall from Section II-C that the above recursion for is
nothing but a one-dimensional discrete Riccati recursion.

Suppose we have . Then for all and
for all . In other words, the information rate ;
obviously, if we send nothing, the information rate should be
zero.

Now take any . If , Lemma 2.5 iv) shows
that where is the positive solution to the one-dimen-
sional Riccati equation
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so that . With a little algebra, we can
solve the Riccati equation to get

which, combined with our choice of ,
implies that . On the other hand

Hence, the coding scheme given by (56) achieves the informa-
tion rate under the power constraint , and hence is
optimal.

The above analysis gives two complementary interpretations
for the role of the signal . Most naturally, we view the feed-
back capacity problem as that of maximizing the information
rate and obviously has the role of carrying the information
we wish to transmit. On the other hand, if we view the feed-
back capacity problem as that of maximizing the output entropy
rate, then has the role of perturbing the (nonstationary) fil-
tered output process so that the resulting perturbed process has
the same entropy rate as its stationary version. This second in-
terpretation leads to the following observation in the spectral
domain.

In the notation of the Cover–Pombra -block capacity
, let denote the “almost Toeplitz” feedback matrix

corresponding to the optimal coding scheme and denote
the message covariance matrix of rank one. If
denote the eigenvalues of , then the
asymptotic distribution of follows the optimal output
spectrum in (47).

Now we argue that there must be one eigenvalue, say , that
goes down to zero exponentially fast (as ) and the rate of
decay is in fact the feedback capacity. Why? The rank of is
1. Hence, roughly speaking, is water-filling the eigenmode
corresponding to with small power . This results in

But we have

thus . Therefore, we can view the role of the rank-one
as the tiny drop of water that fills the exponentially deep

hole in the modified terrain shaped
by the optimal feedback filter .

VI. STATE-SPACE APPROACH TO FEEDBACK CODING

While Theorem 4.1 and Proposition 5.1 provide a character-
ization of the optimal feedback filter, except for the first-order
ARMA spectrum, it is still a nontrivial task to find analytically
(or even numerically) the optimal filter and corresponding feed-
back capacity. As was hinted at the end of the previous section,

the state-space representation provides a much richer develop-
ment, leading to a more explicit answer.

We start by introducing the state-space model for the
ARMA( ) noise spectrum (40). Given stable monic polyno-
mials and with coefficients and ,
respectively, as in (40), we construct real matrices , , and
of sizes , , and as

...
...

. . .
...

Let be i.i.d. Gaussian random variables with zero
mean and unit variance. We introduce a state-space model of a
linear system driven by as the input:

(58)

where the state and the input are independent of each
other. We can easily check that the output is
a stationary Gaussian process with power spectral density

, where

Under the above state-space representation, the channel output
can be expressed as

(59)

We state our main result in this section.

Theorem 6.1: Suppose the stationary Gaussian noise process
has the state-space representation (58). Then, the feed-

back capacity of the additive Gaussian noise channel
, , under the power constraint , is

(60)

Here the maximum is taken over all such that
has no unit-circle eigenvalue and ,

where is the maximal solution to the discrete algebraic
Riccati equation

(61)

and
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This theorem characterizes the feedback capacity as con-
jectured by Yang, Kavčić, and Tatikonda [7, Theorem 6 and
Conjecture 1] in a simpler form (without any extra innovations
process for the input). In particular, as we will see shortly,
this result confirms the optimality of the -dimensional variant
of the Schalkwijk–Kailath coding. When specialized to the
first-order ARMA spectrum, one can also deduce Theorem 5.3
from Theorem 6.1 through elementary algebra.

We prove Theorem 6.1 in two steps. The first step is the fol-
lowing structural result, which is reminiscent of a similar re-
sult in [78] for the finite-dimensional case and is proved
rather directly from necessary conditions in Theorem 4.1 instead
of less manageable Proposition 5.1.

Lemma 6.1: Suppose the Gaussian noise process has the
state-space representation (58). Then the feedback capacity is
achieved by the input process of the form

for some such that has no unit-circle
eigenvalue.

Proof: Suppose that attains the
maximum in (26), or equivalently, the stationary process

defined by achieves the
feedback capacity. If we regard as a vector in the Hilbert
space generated by linear spans of , lies in the
closed linear span of all past , that is, .
Equivalently

We decompose into two orthogonal parts as

where lies in the closed linear span of and , and
lies in the orthogonal complement of in , namely

Since achieves the feedback capacity, from the weak or-
thogonality condition iv) in Proposition 4.2

for some . In other words, for each orthogonal feed-
back filter , we have a representation

(62)

for some .

To ease the notation a little, we shall subsequently write

for a generic random variable (or a random vector) . Under
this notation, we have

so that

(63)

Let , , and . Then, from
the mutual orthogonality of , , and

On the other hand, it is easy to check that

(64)

where

Thus, we have the state-space representation of as

(65)

which implies that satisfies the following discrete algebraic
Riccati equation (DARE):

(66)

where .
Now we prove that is necessarily zero. We first observe

that the derivation of the state-space (65) depends on the fact
that only via the orthogonality of

and . Therefore, if the input process

achieves the feedback capacity and induces the output distribu-
tion uniquely defined by (59)–(66), any other input process of
the form

results in the same output distribution and hence achieves the
feedback capacity, provided that and is orthog-
onal to .1 In particular, we can take ,

1Although ��� �� � is symbolically the same for any choice of � ,
each could result in different output processes defined recursively by � �
� � �� � �� �� � � . However, our analysis of the Riccati
equation shows that the output process is uniquely defined for any choice of
� .



KIM: FEEDBACK CAPACITY OF STATIONARY GAUSSIAN CHANNELS 79

where is a white Gaussian process with power spec-
tral density , independent of .

But as Remark 4.5 shows, a nonzero white achieves the
feedback capacity only if the noise spectrum itself is white.
Since is nonwhite, must be zero. Therefore, the optimal
input process must be of the form

for some such that has no unit-circle
eigenvalue.

Equipped with Lemma 6.1, the proof of Theorem 6.1 is
straightforward.

Proof of Theorem 6.1: We know that the capacity achieving
input process is of the form

From (65), the state-space equation for becomes

(67)

where

and is the unique positive semidefinite stabi-
lizing solution to the DARE

Since is a white process with variance

and , the corresponding information rate is

along with the power consumption . Hence, the
feedback capacity is the maximal information rate over
all satisfying the power constraint .

The proofs of Lemma 6.1 and Theorem 6.1 reveal the struc-
ture of the optimal feedback filter and the corresponding output
spectrum once again (cf. Proposition 5.1). Indeed, we have

This, combined with (64), implies

(68)

which is bounded away from zero [32, Lemma 8.3.1] (cf. The-
orem 4.1 ii)). Furthermore, since the optimal input can be ex-
pressed as , we can easily check from (67) that the
corresponding feedback filter satisfies

From Lemma 2.4 iv), it is easy to see that

(69)

is a normalized Blaschke product, the zeros of which determine
the entropy rate of the output process.

Finally we relate Theorem 6.1 to a multidimensional variant
of the Schalkwijk–Kailath coding. Since we already went
through detailed discussions of the Schalkwijk–Kailath coding
for the first-order ARMA spectrum in the previous section,
we give here a rather sketchy argument. For simplicity, as-
sume the state-space representation (58) of the noise process

with and . For the initial trans-
missions, the transmitter sends , , with

and subsequently

(70)

where achieves the maximum in (60). In other
words, after the initial transmissions, the transmitter refines
the receiver’s error of the current noise state. Since the error is

-dimensional, one must project it down in the direction .
Lemma 2.5 shows that, as far as is positive definite,

or equivalently, as far as is positive definite,
converges to the unique stabilizing solution

of the DARE (61) and thus converges
to . It is also straightforward to rewrite the coding (70)
as the iterative refinement of the receiver’s knowledge of the
message-bearing signal . From this we can gener-
alize the original one-dimensional Schalkwijk–Kailath coding
into the -dimensional one with in some equally
spaced constellation. (Instead of using the minimum mean
square error estimate of , we use the minimum variance
unbiased estimate of ; both estimates are linearly related [32,
Section 3.4], [43, Section 4.5].) As before, we can also interpret
the role of as tiny drops of water that fill the noise terrain
modified by the optimal feedback filter .

VII. CONCLUDING REMARKS

Starting from the Cover–Pombra formulation, we have devel-
oped a sequence of progressively more concrete characteriza-
tions of the feedback capacity. For example, for the first-order
ARMA noise spectrum, the feedback capacity can be charac-
terized as expressions at the bottom of the page. The last two
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characterizations are achieved by a natural and concrete coding
technique:

which resolves the long-standing open question of the opti-
mality of the Schalkwijk–Kailath feedback coding and provides
a single-letter characterization of the feedback capacity.

The solution to the Gaussian feedback capacity problem
reveals a rich connection between control, estimation, and
communication; roughly speaking, when formulated in the
infinite-dimensional variational problem, communication over
the Gaussian feedback channel can be viewed as a stochastic
control problem of the receiver’s estimation error, which can
be, in turn, viewed as the entropy maximization problem of
the output spectrum. We conclude this paper by posing a few
related questions that will invite further investigations to illu-
minate a complete picture of this fascinating interplay between
control, estimation, and communication.

First, from Theorem 4.6 and the Szegő–Kolmogorov–Krein
theorem, we get the following maximin characterization of the
feedback capacity:

(71)

where the infimum is taken over all strictly causal polynomials
and the supremum is taken over all strictly

causal polynomials satisfying

Thus, the feedback capacity problem can be viewed as a game
between the controller (feedback filter) and the estimator .
Does this game has a saddle point? If so, can we get an explicit
characterization of the saddle point and the associated value of
the game? The objective of the optimization problem (71) is not
quasi-convex-concave in and standard Fan-Sion min-
imax theorems [18], [65] do not apply. Nonetheless, the problem
is quadratic, so a careful application of the S-procedure (see
Yakubovich [74]) might lead to an interesting answer.

Second, the feedback capacity characterized in Theorem 6.1
is equivalent to the following optimization problem in

maximize

subject to

(72)

Now this problem can be recast as an instance of bilinear matrix
inequalities [59]. This optimization problem is a slight general-
ization of linear matrix inequalities [4] and indeed for a fixed
signal direction , finding the optimal can be done easily by,
for example, the invariant subspace method [41]. But joint op-
timization of makes the problem nonconvex, so finding
the global maximum under the given power constraint is com-
putationally difficult.

In this regard, Proposition 5.1 has a rather interesting impli-
cation, when combined with Theorem 6.1. The condition ii) of
Proposition 5.1 states that all zeros of (69) ( eigenvalues
of ) should satisfy

where is given in (68). Can we utilize this condition to
find the optimal signal direction and the corresponding feed-
back filter analytically? We remark that this condition is rem-
iniscent of the classical interpolation problem studied by Pick
and Nevanlinna (see, for example, Ball, Gohberg, and Rodman
[2]).

Finally, there is one more potential connection to optimal
control theory. The variational characterization of the feedback
capacity problem seems to have some relevance to the risk-sen-
sitive or minimum-entropy control/estimation problem (see
Whittle [72] and Mustafa and Glover [46]) as was pointed out
by Babak Hassibi, Stephen Boyd, and Sanjoy Mitter in private
communication. Indeed, the dual (38) to the feedback capacity
problem has the leading entropy term
that looks similar to the one in the minimum-entropy control
problem. Furthermore, the technique developed in the proof of
Theorem 3.2 that transforms a sequence of finite-dimensional
problems into a single infinite-dimensional problem can be

Lemma 3.1: Cover–Pombra Theorem [8, Theorem 1]

Theorem 3.2

Theorem 4.1

Theorem 6.1

Theorem 5.3
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useful to other control problems of similar structures. Can these
connections be made more clear and precise?

APPENDIX A
EXISTENCE OF AN OPTIMAL

Suppose that the noise spectrum is lower bounded by
some . We write

Then where the supremum is taken
over all and strictly causal with

(73)

By change of variable , we write

Let denote the space of analytic functions square-in-
tegrable with respect to the noise spectral distribution

. Then by the power constraint (73), and
.

Our goal is to show that the maximum of is
achieved by an in

Here the last constraint comes from the facts that

and that and have real Fourier coefficients. Note that from
the boundedness condition , we have
whenever , since

(74)

The rest of the proof relies on functional analysis on topolog-
ical vector spaces. See, for example, Megginson [45] and Dun-
ford and Schwartz [11] for terminology and proofs of classical
theorems we refer to in the following discussion.

First, we relax the constraint set by embedding the space
of in into the space of positive measures on

. Noting from Lemma 2.2 that

with the infimum over all polynomials with coefficients ,
we define

If is decomposed into absolutely continuous and singular
parts as , Lemma 2.2 shows that

independent of the singular part .
Now we prove that the maximum of is attained in

Recall that is a subset of the space of signed mea-
sures and is isomorphic to the space of linear functionals on
continuous functions on , that is, . Also

is a Hilbert space and the dual of itself. We will show
that the constraint set is compact in the product topology of

topology on and weak ( because
is a Hilbert space) topology on . And then we show
that is upper semicontinuous under the same topology. This
clearly implies that the maximum of is attained in . (That
the maximum of an upper semicontinuous function is attained
on a compact domain is well known. For the proof, see, for ex-
ample, Luenberger [43, Sections 2.13, 5.10].) Finally, because

depends only on the absolutely continuous part of ,
if the maximum of is attained by , there exists

that attains the same maximum of ; clearly, any
singular part of the spectral distribution wastes the power. The
details of the proof follow.

All topological properties such as compactness, closed-
ness, and continuity will be used with respect to the product
topology of topologies on and , unless
noted otherwise.

For compactness, we observe that

and

are norm balls in respective norm topologies; thus both
are compact by the Alaoglu–Banach theorem, and
so is . Since , closedness of
will guarantee its compactness. First note that
if and only if . Since the functional

is bounded (cf. (74) and the
Cauchy–Schwartz inequality), linear, and thus
continuous, is closed. Similarly,
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is continuous, so
the set

is closed. Finally, is a positive measure if
and only if

for all . But for each ,
is (strongly) continuous and convex.

Therefore, it is also weakly (= ) lower semicontinuous;
see Ekeland and Temam [15, Section 2.2]. This implies that
is upper semicontinuous and is closed. Since the
intersection of an arbitrary collection of closed sets is closed,

is closed. For the same reason, is closed, and as a closed
subset of a compact set, it is compact as well.

For upper semicontinuity of , we
first fix and note from the definition of con-
vergence that

for any fixed strictly causal polynomial and any sequence
convergent to . Hence

But for all

and thus

Therefore

for any convergent to . In other words,
is upper semicontinuous and its maximum should be
attained in (and in turn in ).

Finally we remark that the condition that is bounded
away from zero, which was used to prove the compactness
of (in particular, continuity of ), is necessary.
As a simple example, if , it is shown in
Section V that the feedback capacity of this noise spectrum
corresponds to the output spectrum of the form

But we can easily check that there is no optimal
resulting in this output spectrum.

APPENDIX B
PROOF OF THEOREM 5.3

Assume . Given , take as in
(46). Then, we can factor as

where . The corresponding output spectrum
is given by

(75)

or equivalently

for .
We first check that . Indeed, from (46), we can express

as

(76)

(77)

When , (recall so
that is a convex combination of and ; hence

. When , we differentiate (76) to find that ,
, , and that there

exists a unique attaining the minimum of on
. Since and , it suffices to check that

. We have

at , whence

Therefore, .
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Now let

We will show that

For the positivity of , it suffices to show that
is positive. From (77), we have

(78)

so that is positive. (The case is trivial
since .)

The upper bound requires a little more work. Let

for . Then, we can express

for and similarly express

Since the linear fractional function does not have a singu-
larity in , the minimum occurs at one of the end points
and

We consider different cases as follows:
Case 1: . Then, is decreasing on

since

and

is positive. (Recall the standing assumption .)
By Jensen’s inequality

so that

Case 2: . Same as the previous case since
is positive.

Case 3: . As we saw before, so that
is constant for all .

Case 4: . Since with a singularity
at and

we have

Therefore, and satisfy the output spectrum con-
dition ii) of Proposition 5.1.

Finally we check the factorization condition iii) of Proposi-
tion 5.1, namely

has a factor , which follows immediately from (77). This
establishes the optimality of defined in (45) with

and satisfying (46).
From Jensen’s formula (10), we see that the corresponding

feedback capacity is given by

under the power constraint

The case can be treated similarly with , while
the case (i.e., ) is trivial. This completes the proof
of Theorem 5.3.
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